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Abstract

Background: Aim of this study is to describe the relationship between anthropometric traits and educational
attainment among Estonian schoolchildren born between 1937 and 1962. We asked whether height, cranial volume
and face width (a testosterone-dependent trait), measured in childhood predict later educational attainment
independently of each other, family socioeconomic position (SEP) and sex. Associations between morphometric
traits and education and their interactions with biosocial variables are of scholarly importance because higher
education is nearly universally associated with low fertility in women, and often with high fertility in men. Hence,
morphometric traits associated with educational attainment are targeted by natural selection and describing the
exact nature of these associations is relevant for understanding the current patterns of evolution of human body
size.

Methods: Data on morphometric measurements and family background of 11,032 Estonian schoolchildren
measured between seven and 19 years of age were obtained from the study performed by Juhan Aul between
1956 and 1969. Ordinal logistic regression was used for testing the effects of morphometric traits, biosocial variables
and their interaction on the cumulative probability of obtaining education beyond primary level.

Results: Of biosocial variables, family SEP was the most important determinant of educational attainment, followed
by the sex, rural vs urban origin and the number of siblings. No significant interactions with morphometric traits
were detected, i.e., within each category of SEP, rural vs urban origin and sex, taller children and those with larger
heads and relatively narrower faces were more likely to proceed to secondary and/or tertiary education. The effect
of height on education was independent of cranial volume, indicating that taller children did not obtain more
educations because their brains were larger than those of shorter children; height per se was important.

Conclusions: Our main finding – that adjusting for other morphometric traits and biosocial variables,
morphometric traits still robustly predicted educational attainment, is relevant for understanding the current
patterns of evolution of human body size. Our findings suggest that fecundity selection acting on educational
attainment could be partly responsible for the concurrent selection for smaller stature and cranial volume in
women and opposite trends in men.
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Background
Educational attainment is a strong and robust predictor of
essential life outcomes including occupational status, hap-
piness, health, and life expectancy [1]. Since the beginning
of the twentieth century, educational attainment is also
known as the most important predictor of Darwinian fit-
ness, depressing fertility of women nearly universally in
both modern and developing societies [2–4].
Positive and historically persistent associations be-

tween educational attainment and body dimensions, par-
ticularly height and neurocranial volume, have been
described in diverse populations [5–9]. Genome-wide
analyses and pedigree studies have established that asso-
ciations between height, head size, educational attain-
ment, cognitive abilities and parental socioeconomic
position (SEP) have genetic basis [9–12]. Further, the
same genetic variants appear largely responsible for the
phenotypic correlations between these variables [13–15].
Such genetic correlations are informative about the past

selection pressures that have led to clustering of life-
history and behavioural trait values along the fast-slow
continuum of the life-history speed. According to the the-
ory of life-history evolution, traits characteristic for slow
pace of life – late maturation and reproduction, slow de-
velopment, high somatic investment into body and brain
growth, intensive parental care, low birth rates and long
life-span – have coevolved with high intelligence and con-
scientious personality traits [16–18].
Although consistent with the life-history theory,

these findings leave open the question of whether
and how environment modifies the conversion of
genetic correlations between the educational attain-
ment and morphometric traits into the phenotype.
Environmental exposures may either exaggerate or
attenuate translation of genetic predispositions into
phenotypes [19]. For instance, genetic influences on
educational attainment may vary across the context
of childhood SEP [14, 20, 21]. Access to education
may modify the relationship between height and cog-
nitive function [22]. Further, variation in morphology
of different brain structures can mediate the associa-
tions between family income and school achievement
during adolescence [23] and memory performance in
adulthood [24].
Aim of this study is to describe the relationship between

three anthropometric traits and educational attainment
among the large sample of Estonian schoolchildren born
between 1937 and 1962. In particular, we ask whether
height, cranial volume and face width, measured in child-
hood predict later educational attainment independently
of each other, family SEP and sex.
These questions are relevant for understanding the aeti-

ology of individual differences in educational attainment
that are sensitive to genetic as well as societal factors and

growth environment [14, 25, 26]. For instance, although
numerous studies have recorded positive associations be-
tween cranial volume or height vs educational attainment,
only few have simultaneously tested the effect of both
[27]. At proximate level, distinguishing the effects of
height vs cranial volume on education is important be-
cause of strong and sex-specific allometric relationships
between these traits [28, 29]. Ultimately, accounting for
such allometric relationships between anthropometric
traits is also important for predicting the rates and direc-
tions of evolution of human phenotype. For instance, the
question whether the contribution of height to educa-
tional attainment is independent or caused by allometric
correlation with cranial volume (a proxy for cognitive abil-
ity) is relevant for understanding the evolutionary forces
acting on morphometric traits via correlated selection on
education [see, e.g., 30].
Another morphometric trait that is interesting in the

context of educational attainment is face width, an im-
portant component of face masculinity [30, 31]. Face
width is sensitive to testosterone exposure in utero [32]
and during puberty [30]. Men and women with mascu-
line faces are perceived as more aggressive, dominant
and strong reviewed by [33–36]. Associations between
adult testosterone levels and face masculinity are less
clear [37–39]. Notably, however, a small number of
studies have found that facial masculinity correlates with
another proxy of circulating testosterone – physical
strength among both men [40, 41] and women [35, 42].
It is highly likely that all the above-described associa-
tions relate to genetic differences in testosterone pro-
duction as genetic variants that are associated to higher
testosterone levels in the body are also associated with
facial masculinity [43].
We had no predictions about the direction of associ-

ation between facial width and educational attainment.
On the one hand, higher fetal testosterone levels may
be associated with compromised development of cog-
nitive abilities in early childhood (at that, affecting dif-
ferent components of cognition among boys [44, 45]
and girls [46, 47]). On the other hand, facial masculin-
ity in men seems to be commonly associated with suc-
cess and goal attainment not only in in various
competitive social contexts but also in prosaically ori-
ented settings [reviewed by 49]. Endogenous male
testosterone positively predicts cognitive performance
in both cross-sectional and longitudinal analyses
reviewed in [48] and testosterone administration often
(but not always) improves visuospatial cognitive func-
tion [49]. As regards academic performance, Kausel
et al. [50] showed that among both male and female
university students, relative face width predicted posi-
tively achievement in non-quantitative (i.e., orally ex-
amined) courses while grade points earned on the
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basis of written tests showed no associations with face
morphology.
We start with testing the assumption that face

width can be considered as a testosterone-dependent
trait by examining the correlations between face
width and handgrip strength. Next we ask if morpho-
metric traits – height, cranial volume, and face width
measured during school years predict the highest edu-
cational level the children were going to obtain. Spe-
cifically, we aim to test whether previously described
associations between height and educational outcomes
can be ascribed to allometric relationship between
cranial volume (a proxy of cognitive ability) in which
case we predicted that inclusion of cranial volume as
a predictor variable will cancel the effect of height on
educational attainment. Alternatively, if height has an
independent effect on education, we expected that
both predictors will remain simultaneously significant
in the model. Next we test for the occurrence of
significant interaction terms between morphometric
traits vs sex and two markers of growth conditions –
parental SEP and rural vs urban origin. This enables
to establish whether the associations between body
parameters and education are similar among boys and
girls and in children growing up with differential ac-
cess to material and cognitive resources.

Methods
Data on morphometric measurements and family back-
ground were obtained from the anthropometric study
performed by Juhan Aul between 1956 and 1969. The
historical background of this sample is described by
Hõrak and Valge [51]. Face width was measured as a
bizygomatic distance, i.e., maximal distance between the
most lateral points on the zygomatic arches. Cranial vol-
ume was calculated according to Rushton [52]:
7.884*(head length-11) + (10.842*head width-11)-1593.96
for girls and 6.752*(head length-11) + (11.421*head
width-11)-1434.06 for boys (units in mm).
The dataset involves 15,205 girls and 11,757 boys (for

both, average age = 12.7, SD = 3.1, range = 7–19 years);
this dataset 16 times larger than the one used in the pre-
vious study of Hõrak and Valge [51] and involves both
girls and boys. These data were used for calculation of
age- and sex-specific residuals for height, cranial volume,
face width and handgrip strength and correlations be-
tween these (Additional file 1: Figure S2-S3). Residuals
were calculated with smooth non-parametric regression
line and automatic smoothing parameter selection using
package ‘gam’ for R [53] and transformed to z-scores
within sexes. In addition to age in days, regression in-
cluded birth date as a predictor variable to account for
secular increase in body dimensions during the study
period [see 53].

From this sample, we identified a subset of 11,032 in-
dividuals whose educational attainment was recorded in
the Estonian Population Registry (https://e-estonia.com/
solutions/interoperability-services/population-registry/).
Data on the highest level of education obtained were
based on self-reported data from the last Estonian popu-
lation census in 2011 (https://www.stat.ee/phc2011); by
that time all the subjects had completed their maximum
level of education. Educational attainment was divided
into three categories: primary (8 years of schooling or
less), secondary (including secondary vocational) and
tertiary (> 11 years of schooling). On the basis of paren-
tal professions recorded during data collection, partici-
pants were assigned to parental SEP values (highest in
the family) as unskilled manual workers, skilled manual
workers or non-manual workers.
Ordinal logistic regression [54] was used for testing

the effects of morphometric traits, biosocial variables
and their interaction on the cumulative probability of
obtaining education beyond primary level. Additionally
we run the same models in binary logistic regressions
where the dependent variable was either obtaining ter-
tiary vs secondary or secondary vs primary education.
All models were tested for the interactions between birth
year vs sex, parental SEP, and urban/rural origin to ac-
count for confounding secular trends in educational at-
tainment during the study period. All tests are two-
tailed with a P-level below 0.05 as a criterion for
significance.

Results
Higher levels of education were more prevalent among
girls and in general, children of urban origin (Additional
file 1: Figure S1, Figs. 1-2). All anthropometric variables
were positively correlated (Additional file 1: Figure S2-
S3). Face width predicted handgrip strength better (girls:
r = 0.26; boys: r = 0.35) than another measure of head
size, cranial volume (girls: r = 0.20; boys: r = 0.27), con-
firming our assumption that face width can be regarded
as a marker of testosterone exposure.
Parental SEP was the strongest predictor of educa-

tional attainment (Figs. 1-4, Additional file 1: Table S1).
Yet after adjusting for the covariates in the model, all
three anthropometric parameters independently pre-
dicted the educational attainment that children were go-
ing to obtain. Taller children with larger heads and
narrower faces had higher cumulative probability of
obtaining either secondary or tertiary education (Figs 3,
4 and 5). None of the interaction terms between mor-
phological variables and factors (sex, rural/urban, SEP)
improved the fit of the model in Additional file 1: Table
S1 significantly (p = 0.13–0.81; likelihood ratio tests).
To illustrate the results, we apply the odds ratios pre-

sented in Fig. 1 to the quantile values of raw measurements

Valge et al. BMC Public Health         (2019) 19:1696 Page 3 of 11

https://e-estonia.com/solutions/interoperability-services/population-registry/
https://e-estonia.com/solutions/interoperability-services/population-registry/
https://www.stat.ee/phc2011


www.manaraa.com

Fig. 1 Odds ratios (variable Est.) for testing the main effects of morphometric traits and biosocial variables on the cumulative probability of
obtaining education beyond primary level (ordinal logistic regression). See Additional file 1: Table S1 for the estimates and p-values of interaction
terms. Nagelkerke R2 for the model = 0.19

Fig. 2 Odds ratios (variable Est.) for testing the main effects of morphometric traits and biosocial variables on the probability of obtaining tertiary
vs secondary (Nagelkerke R2 = 0.13) or secondary vs primary (Nagelkerke R2 = 0.16) education in binary logistic regression. See Additional file 1:
Tables S2-S3 for the estimates and p-values for interaction terms
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among the most common age class, 13-years old children
(1577 girls and 1276 boys). For girls, being 4.5 cm (2.8%)
taller than the median of 155 cm (5. 2 cm above 153 cm for
boys; 3.3%) increased the chances of proceeding from pri-
mary to secondary or secondary to tertiary education by
10%. Girls with cranial volume 54 cm3 (4.1%) above the me-
dian of 1262 cm3 (boys: 52 cm3 above 1367 cm3; 3.6%) had
15% higher chances of obtaining the secondary (over pri-
mary) or tertiary (over secondary) education. Having a 0.3
cm (2.3%) narrower face than the median of 13 cm in-
creased the chance for proceeding to secondary or tertiary
education by 5% for both sexes.
Next we tested in binary logistic analysis whether

the same variables as in Fig. 1 predicted the chances
of proceeding from secondary to tertiary education.
The best model was almost identical to that in Add-
itional file 1: Table S1 with an exception that three-
way interaction between sex, urban/rural origin and

year of birth (YOB) has lost its significance (Add-
itional file 1: Table S2).
Examination of model predicting the chances of

proceeding from primary to secondary education re-
vealed that face width was not significant any more
(P = 0.063 in Wald test). The best model (Additional
file 1: Table S3) also suggested that the effect of cra-
nial volume on proceeding to the secondary educa-
tion depended on sex. Analysing the data for boys
and girls separately revealed that in the case of boys,
none of the morphometric variables predicted
education (cranial volume: OR = 1.04, 95% CI = 0.99–
1.10; height: OR = 1.05, 95% CI = 0.99–1.10). In the
case of girls, both morphological variables remained
significant although notably, the confidence intervals
showed some overlap with these of boys (cranial
volume: OR = 1.13, 95% CI = 1.06–1.19; height: OR =
1.07, 95% CI = 1.01–1.14).

Fig. 3 Predicted probabilities ±95% CI of obtaining primary, secondary or tertiary education in relation to cranial volume. Based on the model
described in Additional file 1: Table S1 and Figure 1
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Discussion
Parental SEP was the most important determinant of
educational attainment. Children whose parents were in
non-manual profession had 3.6 times higher and chil-
dren whose parents were in skilled manual profession
had 1.5 times higher cumulative odds of obtaining edu-
cational level beyond primary (Fig. 1). This is consistent
with previous findings demonstrating that parental SEP
(besides intelligence) is the most important predictor of
educational attainment worldwide [55, 56], including
Estonia [57]. The mechanism of this connection may in-
volve both social and genetic inheritance of both SEP
and education [14] and the genetic correlations between
the two are not trivial. For instance, social deprivation
can genetically strongly correlate with educational at-
tainment (rg = − 0.55 in UK Biobank sample [58];).
Being of rural (vs urban) origin reduced the odds of

obtaining education beyond primary level by 44% and being
a boy vs girl by 47%. Rural-urban educational gap is

consistent with the global evidence [59]. However, the
higher female to male ratio in secondary and tertiary educa-
tion seems to be specific peculiarity of some Soviet and so-
cialist regimes [60] as compared to the global patterns in
the middle of the twentieth century [61]. Figures 1 and 2
also indicate that after accounting for socioeconomic and
sex differences, number of siblings had still independent
(though small) effect on education. This pattern, too, is
consistent with previous evidence e.g., [62].
After adjusting for biosocial variables, all morpho-

metric traits still significantly predicted educational
attainment. Thus, within each category of parental
SEP, rural vs urban origin and sex, taller children
and those with larger heads and narrower faces were
more likely to proceed to secondary and/or tertiary
education. Assuming that measured morphometric
traits reflect some intrinsic qualities of individuals,
our results provide anthropometric evidence that
within socioeconomic strata, a detectable meritocracy

Fig. 4 Predicted probabilities ±95% CI of obtaining primary, secondary or tertiary education in relation to height. Based on the model described
in Additional file 1: Table S1 and Figure 1
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in the Estonian educational system under the Soviet
regime existed. Our assumption that cranial volume
and height reflect qualities related to educational
achievement is supported by previous findings from
the Juhan Aul’s dataset, showing that girls progres-
sing slowly at school (those that were > 1.5 years old
for their grade) were shorter and had smaller heads
than those progressing at school at an appropriate
rate for their age [63].

Cranial volume
As regards cranial volume, the most parsimonious ex-
planation to its independent effect on education is its
strong correlation with brain size (head circumference
vs brain volume: r = 0.72–0.86 [64]; head circumference
vs intracranial volume: r = 0.91 [9]). Brain and head
size, in turn, correlate phenotypically with intelligence
(r = 0.19–0.63 [27, 29, 65, 66]). Cranial volume also cor-
relates genetically with IQ (rg = 0.25 [67]; rg = 0.27 [9]
and educational attainment (rg = 0.14–0.44 [9, 68]).
Genetic correlations between IQ and educational at-
tainment are even stronger (rg = 0.70–0.73 [69, 70]).

Cranial volume is sensitive to resource availability dur-
ing growth too [28, 51]. Again, this association can have
a strong genetic component (rg between household in-
come and intracranial volume is 0.53 in UK Biobank
sample [58]).
Our finding that cranial volume predicted educa-

tional attainment (controlling for social stratification
and height) is similar to that of Nave et al. [27] who
assessed the brain volume on the basis of MRI scans
of 13,608 40–69 year old participants of UK Biobank.
The similarity of the findings to these two large-scale
studies indicates that head size is a robust predictor
of educational attainment, irrespective of the method
of measurement and whether using adult population
experiencing market economy or children pursuing
education under the Soviet regime. Nave et al. [27]
did not find any sex differences in associations be-
tween brain volume and cognitive ability or educa-
tional attainment. Results of our study are generally
consistent with this finding with an exception that
odds of obtaining secondary education depended on
head size among girls but not in boys.

Fig. 5 Predicted probabilities ±95% CI of obtaining primary, secondary or tertiary education in relation to face width. Based on the model
described in Additional file 1: Table S1 and Figure 1
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Height
Our study confirms earlier findings that height is posi-
tively associated with educational attainment [6, 71, 72].
One of the likely reasons for this association is genetic
correlation (rg = 0.16–0.65, depending on age) between
height and IQ [73]. This may occur either because the sets
of genes affecting these traits partially overlap (pleiotropy)
and/or because positive assortative mating for height and
education (as components of overall attractiveness) causes
cross-trait assortative mating, leading to genetic covari-
ation due to gametic phase disequilibrium [10].
Importantly, this study also shows that the effect of

height on education was independent of cranial volume.
This means that taller children did not obtain more edu-
cations because their brains were larger than those of
shorter children; height per se was important [see 6].
One possible explanation for this independent height ef-
fect is that taller children possess more non-cognitive
skills. For instance taller children may more likely par-
ticipate in sport activities that enable to accumulate so-
cial skills that favour continuation of education [72]. It is
also possible that active gene–environment correlation
may play a role, for example, if tall children generate in-
tellectually more stimulating environments than short
children [73]. Yet another, not mutually exclusive ex-
planation would be discrimination or social stigma
against shorter individuals. For instance Vågerö and
Modin [74] shoved that among Swedish men with simi-
lar cognitive abilities; those who were taller were more
likely to obtain university education than shorter ones.
Lastly, the finding that the effect of height on education
was independent of cranial volume is consistent with an
idea that variation in these traits reflects genome-wide
mutational loads. I.e., height, cranial volume and educa-
tional attainment may stand as independent markers of
overall genetic quality see [10, 75, 76].

Face width
We a found a small effect of face width on the odds of
obtaining tertiary education. Although face width corre-
lated positively with height and cranial volume, children
with narrower faces (for fixed height and cranial volume)
had higher odds for continuation of education beyond
the secondary level. Assuming that face width is a proxy
for testosterone exposure in utero and/or during adoles-
cence, our results suggest that both boys and girls with
higher testosterone exposure or levels were less likely to
progress on educational path.
The result that both boys and girls with narrower,

less masculine faces were more likely to obtain higher
education is notable as it contrasts with previous find-
ing that both male and female university students with
relatively wider faces gained better grades in orally ex-
amined courses [50] and that face masculinity predicts

success in various competitive and pro-socially ori-
ented settings [77]. Our finding is also not compatible
with studies showing the positive association between
circulating testosterone levels and cognitive abilities
(see Introduction). On the other hand, assuming that
face width is testosterone-dependent trait, our results
compare favourably with those of a study of 4462 US
military veterans, whose serum testosterone levels
correlated negatively with the years of education (r =
− 0.11) and intelligence (r = − 0.07) [78]. Mediation
analysis of veteran data showed that the effects of tes-
tosterone on education were mediated similarly by
high antisocial behaviour and low intelligence. Dabbs
Jr. [78] suggests that characteristic interests could lead
high-testosterone individuals away from school and
towards a world of action: given that testosterone is
related to simple perseverant responding, “high-testos-
terone individuals may find little satisfaction spending
hours sitting in classrooms and considering ideas”. If
such reasoning is correct then proposed relationship
between high testosterone and low perseverance might
also explain our finding that children with narrower
faces were more likely to pursue tertiary education.
Consistent with such an explanation are several stud-
ies showing that high levels of testosterone are linked
to higher impulsivity and weaker behavioural control
reviewed in [79], i.e., traits characteristic to the fast
life histories and low educational attainment [80].

Strengths and limitations
Current study is the second largest one after that of Nave
and co-authors [27], showing that cranial dimensions and
height predict the educational attainment, controlling for
the biosocial background. Its strengths are that due to his-
torical reasons, the participation was not voluntary, which
considerably reduces the recruitment selection and that all
the participants were younger than 20, which almost en-
tirely eliminates the mortality selection in the sample see
[81]. For instance, the sample of Nave et al. [27] consisted
almost entirely of adults and elderly that overrepresented
individuals of higher SEP.
On the other hand, measuring children poses a

limitation because they grow at individually different
rates. E.g., a child might be small for age at age 13
but still end up in above average size if his/her pu-
bertal growth spurt starts later than average and vice
versa. This is an unavoidable problem of all cross-
sectional morphometric studies of children; however
such measurement errors are conservative as they do
not introduce any systematic bias. Another limitation
is that the study was based on secondary data, thus
its design was not under the control of the authors.
Nevertheless, we consider that the quality, uniqueness
and richness of the dataset collected by Prof Juhan
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Aul weighs up against possible shortcomings of the
study design (e.g., randomization issues). Importantly
for quality, all the morphometric measurements were
collected by the same person and recording of suffi-
cient amount of background variables enables statisti-
cally control for the main biosocial confounders.

Conclusions and implications
Our main finding – that adjusting for other morphometric
traits and biosocial variables, morphometric traits still ro-
bustly predicted educational attainment, is relevant for un-
derstanding the current patterns of evolution of human
body size. Across western populations, female education is
almost universally negatively related to reproductive success
[82–84] while among men, typically stabilizing or positive
selection on education prevails [reviewed in 84, 85, 86]. Ac-
cording to the census data, Estonian women with only pri-
mary education bore 0.5 to 0.75 more children on average
than women with tertiary education throughout the twenti-
eth century [85]. In parallel, natural selection in developed
countries usually favours shorter women and taller men
[86–89]. These parallel patterns refer to the possibility that
selection acting on educational attainment could be at least
partly responsible for the concurrent selection for smaller
stature and cranial volume in women and opposite trends
in men. So far the phenotypic response to this correlated
selection has been masked by secular increase in body di-
mensions [see 53]. However, one might predict that with
general improvement and equalisation of growth condi-
tions, genetic between-individual differences in body di-
mensions will become more clearly detectable in the
phenotype [see also 82, 86, 89].
That evolutionary changes can be rapid is confirmed

by a study in Iceland, showing that selection against gen-
etic variants associated with educational attainment can
lead to change in the genetic composition of population
in few generations [90]. Hence, the possibility that traits
genetically correlated with educational attainment (such
as height and cranial volume) will show a correlated re-
sponse in the phenotype in the future generations,
should not be underestimated. At the same time, the ef-
fect of education on reproduction involves a substantial
non-genetic component too [14, 26]. In this context, our
findings suggest that patterns of current selection on hu-
man body dimensions constitute an example of gene-
culture coevolution.
As for practical concerns, the finding of this study

that height predicts educational attainment independ-
ently of cranial volume, sex and SEP calls for the re-
search on possible issues of discrimination or social
stigma against shorter individuals at school. Behav-
ioural pathways (and associated genetic underpin-
nings) that lead to educational advantage of taller
children deserve further investigation.
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